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In a recent contribution to this journal, Décamps, Mariotti, and Villeneuve (2005) analyze the decision of when to
invest in a project whose value is perfectly observable but driven by a parameter that is unknown to the decision
maker ex ante. Using filtering and martingale techniques, they find that (i) the decision maker always benefits
from an uncertain drift relative to an average drift situation, and (ii) drift uncertainty unambiguously delays
investment. Using the principle of smooth fit, I derive an analytical solution to the problem and give a numerical
example that shows that both claims do not hold true in general. My analysis shows that the impact of drift
uncertainty on the value of the option to invest and the optimal timing of investment is governed by two separate
effects: the impact of uncertainty per se and the impact of learning. In particular, the authors’ results only hold
true if the latter outweighs the former.
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1. Introduction. The purpose of this comment is twofold. First, I derive an analytical solution to
the optimal stopping time problem P considered in [2]. Hence, I find a closed-form expression for the
value of the option to invest defined by

G* (Vo, Py) =supE [e_”VT — I] , (1)

where the current payoff of the investment opportunity V; and the decision maker’s beliefs P, =
Pr[u = | Fi] about the drift of V; follow, respectively,

[d‘%ﬂ _ [uz + P (Ouh - Mz)} dt + [wpt (10_ P)

and w = (u), — py,) /o represents the signal-to-noise ratio of the updating process. The analytical solution
obtains whenever y; + u;, = 0. This is so, since the latter condition establishes a one-to-one mapping
between payoff V; and beliefs P;, which, in turn, reduces P to a one-dimensional optimal stopping time
problem. In this case, the optimal stopping time is a trigger strategy, that is, 7* = inf {¢t : V; > V*},
where the optimal investment threshold V* is a constant that can be determined by the principle of
smooth fit.!

} v, 2)

Second, on the basis of the analytical expression for G* (Vg, Py), I give a numerical counterexample
to the claim of Theorem 7.2 in [2]: I thereby show that the value of the option to invest need not
increase with the introduction of drift uncertainty.? Correspondingly, a mean-preserving spread around
some average drift need not delay investment. Rather, the impact of drift uncertainty on option value
G* (V, Py) and optimal investment threshold V* can be decomposed into the impact of uncertainty per
se and the (separate) impact of the decision maker’s learning process. In particular, I show that Theorem
7.2 in [2] only holds true if the latter outweighs the former. A purely numerical analysis of problem P
that I present in [4] for the case in which y; + p;, # o strongly suggests that this finding is robust.?

ISince I reduce P to a one-dimensional optimal stopping time problem before applying the principle of smooth fit, the
concerns that [2] voice with respect to the applicability of the latter do not apply. See page 473 of the original contribution
for a discussion of the issues involved when considering the bivariate problem.

2Recall that [2] consider the special case in which g, = 0 and pj, = 1. My analysis accomodates the original contribution
by considering the case in which p; 4+ p), = 02 =1.

3There, I consider the partial differential equation that corresponds to P by the Feynman-Kac theorem. Since outside
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2. Analytical Solution of the Problem. To solve (1) explicitly, I perform a change of variable
and define a new value function:

LEMMA 2.1 Consider the likelihood ratio ¢, = Pi/ (1 — P;) with initial value ¢y = Py/ (1 — Py) and the
value function defined by

S (Foutn) = (14 60) 6" (Vo 22 ). ®)

From (1), Girsanov’s theorem implies
3 (Vo, ¢o) = sup By, [e77 (1 +¢,) (V- = 1], (4)
where By, denotes the expectation operator with respect to the laws of motion

it = 8] 2+ [ .

—
Ut
~

and dW; = wo,/ (1 + ¢,) dt + dW,.

ProoF. Consider the process A\, = (fi, — ;) /o, where i, = p; + Py (p, — ;) is the expected growth
rate of V; as of time ¢. Then, A\ = wP; = w¢,/ (1 + ¢,), and we have the exponential Martingale

t 1 t
1, = exp (/ NedW, — 7/ Aids> :
0 2 0

where dW, = M\yds + dW,. By Girsanov’s theorem?, we obtain the Radon-Nikodym derivative 7, =
dP/dP,, such that
supE ¢ (V; = I)] =supE,, [e”"™n, (V- = I)].

It is left to show that n, = (1+¢,) /(1 + ¢,). Clearly, n, = 1. Moreover, Itd’s Lemma and the law of
motion for ¢, from (2) imply d¢,/¢, = wdW,; + w? Pidt, which, in turn, implies d¢,/ (1 + ¢,) = A\ dW; =
dny /- U

Lemma 2.1 disentangles the dynamics of the payoff of the investment opportunity from the dynamics
of learning: by changing the drift of V; from [, to y,;, I represent the optimal stopping time problem
under incomplete information (for G* (Vy, Py) the drift of V; is unknown and updated continuously) as an
optimal stopping time problem under complete information (for X* (Vp, ¢) the drift of V; is known and
constant). Since it coincides with the Radon-Nikodym derivative that defines a change of drift from g
to fi;, the multiplicative payoff adjustment (14 ¢.) /(1 4 ¢,) for 7 > 0 ensures that both formulations
are equivalent.

Next, defining the constant € = (u; + p;, — 02) /2 and integrating (5), we immediately have (¢,/¢y)” =
es“t (V;/Vo)® . The last equation, in turn, establishes a direct link between the dynamics of learning and
the current payoff of the investment opportunity. In particular, it shows that time ¢ and the current
position of V; relative to some initial value V; are a sufficient statistic for ¢, relative to some initial
belief ¢,. Moreover, it is immediately obvious that for y; + u;, = o2 the relationship between V; and ¢,
is independent of time: when ¢ = 0, then, for some initial values Vy and ¢,, we obtain the one-to-one

mapping

AN

so=an(7) 0
It is then possible to reduce the dimensionality of optimal stopping time problem P to one state variable
by substituting (6) into (4). This, in turn, allows for an analytical solution of (4), and thereby (1):

PROPOSITION 2.1 (1) For u;+pu, = o2, the optimal stopping time that solves (1) is a trigger strategy
with 7 = inf{t : V; > V*}. The constant investment threshold V* depends on initial values Vo
and Py and is uniquely defined by

fl + 15(1)90 (%)U fh

fi-14 2 (5)7 (- )

the parameter restriction the problem is isomorphic to the valuation of an American put option with finite maturity, I resort

V* = I, (7)

to an implicit finite-difference scheme that solves the free boundary problem in linear complementarity form.
41t is easy to verify that the Novikov condition holds true.
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where f; follows, for p; € {u;, 1y}, from

) 1 : 1\? 2
(DD E

(i) The value of the option to invest is

G (Vi ) = (1= P) Gy (Vs V) + PGy (Vi V), (9)
where C;’Z-(V}; V*) follows, for fi; € {fi, frn}, from

Gi (Vi V) = (Vv)f v -1y,

PrOOF. From (4) and (6), we have

Vi, ¢y) = (Vi) =supE,,,

e’ (1 + ¢y (‘;g) §> (V, — I)] :

The last equation defines a standard one-dimensional optimal stopping time problem: since V; follows
a canonical diffusion process with constant drift u; and volatility o, the conditions of the Feynman-Kac
theorem are satisfied. Hence, from [5] we know that ~ (V) satisfies the variational inequality

Ly (Vi) — 1y (V). <1+¢0 (K)) Vi )~ 7 (V)

max

=0, (10)

where £ denotes the differential operator. Without loss of generality, we can then consider the optimal
stopping time to be of the first-passage type, that is, 7 = inf {¢ : V; > V;}, where the optimal choice of V;
is still to be determined.® From (10), inside the continuation region (that is, for V; < V), v(V;) therefore
needs to satisfy the homogeneous Cauchy-Euler ordinary differential equation

1
SO VEY (V) + mVey' (Vi) = ry(Va) = 0,

subject to the boundary condition v(0) = 0 and the value matching condition (V) = (1 +
¢o (Vi/Vo)7) (Vi — I). From this, we immediately obtain

" (V) = (ﬁ)f (1 + 4, (5)) Vi—1). (11)

Next, as [1] and [5] show, for the simple problem under consideration, the optimal choice of investment
threshold V7, denoted by V*, is obtained by imposing the smooth pasting condition®

Vieve a%; <<1+¢o <“Z)w> (V2 —I))

However, noting that v (V;) , as defined by (11), is globally concave in V7, the optimal investment threshold
V* can just as well be determined from setting the first derivative of (11) with respect to V; equal to
zero. It is easy (albeit tedious) to verify that both procedures lead to the following equation that uniquely
determines V*:

0

87%7 (Vt)

Vi=V.

qle

_ Ji+ @ (‘{/T) (fl* %) I
fi-t+a (%) (h-2-1)

Since ¢y = Po/ (1 + Py) and, for p; 4 1, = 0, we have f; — £ = fj,, we then obtain (7).

5See [3], [6], and in particular [1] for a formal proof of the optimality of a trigger strategy.
' Assumptions 1-3 in [5] are trivially satisfied such that their Theorem 8 applies.
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To prove the second part of Proposition 2.1, recall from (3) that (14 ¢,) G* (Ve, ¢,/ (1 +¢,)) =
*(Vi, ¢,) = v(V;). Hence, we get

fu * %
arae (nls) - (3 (1+¢0(‘Vfo) )(V*—f)

From (6) and f; — % = f,, we finally obtain

f f *
o (18 ) - (s
Clte) L+, ’
which, upon substitution of ¢, = P,/ (1 — P;), proves (9). O

The first part of Proposition 2.1 shows that when the relationship between V; and ¢, (and thereby the
relationship between V; and P;) is independent of time — as captured by (6) — then the optimal stopping
time that solves (1) can be represented as a trigger strategy. The second part of Proposition 2.1 then
interprets the value of the option to invest under incomplete information as a belief-weighted average of
the complete information benchmarks that obtain for the low and the high drift, taking the investment
threshold V* from (7) as a given.”

Next, inspection of (7) in conjunction with (6) reveals that the optimal investment threshold V* can
be interpreted as a harmonic average of the respective complete information benchmarks f;/ (fi — 1)1
that obtain for p; € {py, py,} with f; € {fi, fn}: we have

_ fi 4" fn I (1—=P*) fi+P*fn /
fi=14+6" (fn—1) I=P)(fi=1)+ P (fn—1)"

where ¢* and P* denote the decision maker’s beliefs at investment.® Congruent with this interpretation,
we also have the following result:

V*

COROLLARY 2.1 The belief-dependent investment boundary v* (P), which from Theorem 7.1 in [2] is
non-decreasing and continuous on [0, 1], is given by

(L-P)fi+Pfn
A=P)(fi=)+P(fn—1) "

vt (P) = (12)

PROOF. The result immediately follows from solving the optimal stopping time problem for the
belief-weighted average given by equation (9). O

Note that the constant investment threshold V* from (7) is dynamically consistent with moving bound-
ary (12) that defines the investment region: this is so, since, for as long as the parameter restriction
W + py, = o? applies, the law of motion of V;, combined with (12) and the one-to-one mapping

1
P=—, (13)

1— P, Vi
L (1)

allows the decision maker to perfectly anticipate the first time that V; hits v*(P;) from below.” In V;
and P,—dimension, these are the fixed points V* and P*: V* = V.« = v* (Pp+) = v* (P*), where
7 = inf{t : V; > V*} and P* follows from (13) with V; = V*. Hence, from (7) and (13), the optimal
stopping time 7* could equally well be characterized as 7* = inf{¢t : P, > P*}. In summary, inside the
continuation region we have V; < V* and P, < P* for all ¢ < 7*. The decision maker optimally invests
the first time that V; = V* (which implies P, = P*, and vice versa) with V* = v* (P*).

qle

"Note that V* would not be optimal if the decision maker knew for sure that the drift is either low or high.
8 Beliefs at investment P* are further characterized below.
9Note that (13) is immediately obvious from P; = ¢,/ (1 + ¢,) and (6).
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Insert Figure 1 here.

Figure 1 illustrates the result: since there is a one-to-one mapping between V; and P;, the horizontal
axis can be interpreted both in terms of the current payoff of the investment or beliefs. Correspondingly,
moving boundary (12) is represented by the convex curve that is bounded by the complete information
benchmarks v* (0) = f;/ (fi — 1) I and v* (1) = fr/ (fn — 1) I. v* (P) slopes upwards, as more optimistic
beliefs about the true drift of the payoff process favor later investment. For given intitial values V and Py
we thus obtain the initial threshold v* (Py). On the other hand, the intersection of (12) with the 45-degree
line determines the optimal investment threshold V*. A final, intuitively appealing interpretation of the
optimal investment threshold proceeds as follows:

COROLLARY 2.2 Define v; (Vi) = fil — (fi = 1) Vi for fi € {f1, fn} as the value of continuation in the
respective benchmark case of complete information. Then, the optimal investment threshold and beliefs
at investment satisfy (1 — P*)v; (V*) + P*op, (V*) = 0, where V* and P* are given by (7) and (13) with
V,=V*.

ProoF. From before. O

Under complete information, we have v; (V) > 0 whenever V; < f;/ (fi — 1) I: continuation is optimal
when the true growth rate is known to be either u; € {1, uj,} and V; is smaller than the respectively op-
timal investment threshold. With drift uncertainty, however, investment occurs when the belief-weighted
average of the value of continuation vanishes: it is precisely then that the risk of investing too late
(v (V*) < 0) balances the risk of investing too early (v (V*) > 0).

3. Numerical Counterexample to Theorem 7.2. Recall that [2] compare the investment prob-
lem under incomplete information with an average drift scenario in which g = p; + Po (), — ) is
used in the analytical expressions that obtain in the benchmark case of complete information. Figure
1 is drawn in such a way that the optimal investment threshold for an average drift, as represented by
V = f(i)/(f () — 1)1, lies above the optimal threshold under drift uncertainty, as represented by V*.
As I show in the following, this need not be the case but is a possibility that is ignored in [2].

In accordance with [2], T presume p; = 0, p;, = 1, and, so as to match the parameter restriction,
set 02 = 1. With Py = 0.5, I thus consider a mean-preserving spread around fi = 0.5. The remaining
parameters are two distinct initial values Vi = 100 and ViZ = 200, as well as the interest rate r = 1.5,
and the cost of investment I = 100. Panel 1 shows the results that obtain for the initial position of the
belief-dependent investment boundary v*(Pp) from (12), the optimal investment threshold V* from (7),
beliefs at investment P* from (13) with V; = V*, the value of the option to invest G* (Vy, Py) from (9),
and the price of the Arrow-Debreu security E [e_'" T*] 10

ey Vo | v () Ve Pr G (Vo,Py) Ele™]

0.5 0.5 100 | 236.60 236.60 0.5000 30.73 0.2249

0.0 1.0 100 | 224.56 275.78 0.7338 31.94 0.1817

0.5 0.5 200 | 236.60 236.60 0.5000 102.10 0.7474

0.0 1.0 200 | 224.56 230.27 0.5351 101.29 0.7775
Panel 1

From Panel 1 we see that, for both V! = 100 and ViZ = 200, drift uncertainty has two effects:
first, for given beliefs Py, the optimal investment threshold v* (Py) = 224.56 is always lower than V=
f()/(f (@) —1)I = 236.60. This is so, since, from (8), f(-) is convex and f(-) > 0. As [2] argue on
page 483, the result illustrates “an implicit risk aversion due to the additional uncertainty generated
by the randomness of p”. Put differently, for given beliefs Py, the introduction of uncertainty per se

107t is well-known that, under complete information, the price of the Arrow-Debreu security corresponds to (Vt/VI)fi for
fi € {f1, fn}- Under incomplete information it is easily calculated as a belief-weighted average of the complete information
benchmarks.
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accelerates investment. At the same time, the dynamics of learning delay investment: since (i) from
(13) a positive innovation in V; correlates positively with P, and (ii) from (12) more optimistic beliefs
favor later investment (v*'(P) > 0), an increase in V; raises the belief-dependent investment threshold
v* (P;). Whether it is the first or the second effect that dictates the overall impact of drift uncertainty
on V* therefore depends on parameter values. Comparing the first with the second row, we see that
when V) = 100 is comparatively distant from the initial investment threshold v* (Py) = 224.56, then,
by the time that V; has reached a level close to v* (P;), the decision maker’s beliefs P; are sufficiently
optimistic such that V* > V. On the other hand, comparing the third with the fourth row, in the case in
which Vi = 200 is comparatively close to the initial investment threshold v* (Py) = 224.56, then there is
little scope for learning. Correspondingly, it is the impact of uncertainty per se that governs the optimal
investment threshold and V* < V.

To gain a better understanding of the effects at work, in Panel 2 I isolate the impact of uncertainty
by keeping the investment threshold V; fixed at the level V' = 236.60 that is optimal for the average drift
scenario:

Vo | VT (Po) Vi Pr G(Vo,By) Ele™]
0.5 0.5 100 | 236.60 236.60 0.5000 30.73 0.2249
0.0 1.0 100 | 224.56 236.60 0.7029 31.64 0.2316
0.5 0.5 200 | 236.60 236.60 0.5000 102.10 0.7474
0.0 1.0 200 | 224.56 236.60 0.5419 101.25 0.7412

Panel 2

We clearly see that, as in Panel 1, drift uncertainty has an asymmetric impact on both the value of
the option to invest, as captured by G (Vp, Py) , and the likelihood of investment, as captured by E[e™"7],
even when keeping the investment threshold fixed at a suboptimal level. For V' = 100 it is the upside
potential of drift uncertainty that raises both quantities, whereas for ViZ = 200 it is the downside risk
that decreases the value of the option to invest and the likelihood of investment.

4. Conclusion. I have shown that the impact of drift uncertainty on both the value of the option to
invest and the optimal timing of investment is governed by two separate effects: the impact of uncertainty
per se and the impact of learning. Since the relative magnitude of both effects depends on parameter
values, the overall impact is ambiguous. I have given a numerical example for both cases: in the first
scenario Theorem 7.2 in [2] holds true and drift uncertainty raises the value of the option to invest, thereby
delaying investment; in the second scenario Theorem 7.2 in [2] does not hold true and drift uncertainty
reduces the value of the option to invest, thereby accelerating investment.

The results follow a simple economic logic: whether or not the decision maker is willing to accept a
gamble on the drift of the investment project depends on how close to being exercised the option to invest
is for an average drift. If the option is comparatively “far out of the money”, then the upside potential of
a mean-preserving spread outweighs the downside risk. If, however, the option is comparatively “close to
the money”, then the downside risk outweighs the upside potential. Intuitively, in the latter case the drift
of the investment project is of second-order importance: already for an average drift the realization of
the investment project’s payoff, the magnitude of which is drift-independent, is imminent. It is precisely
then that “a bird in the hand is worth two in the bush”.
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